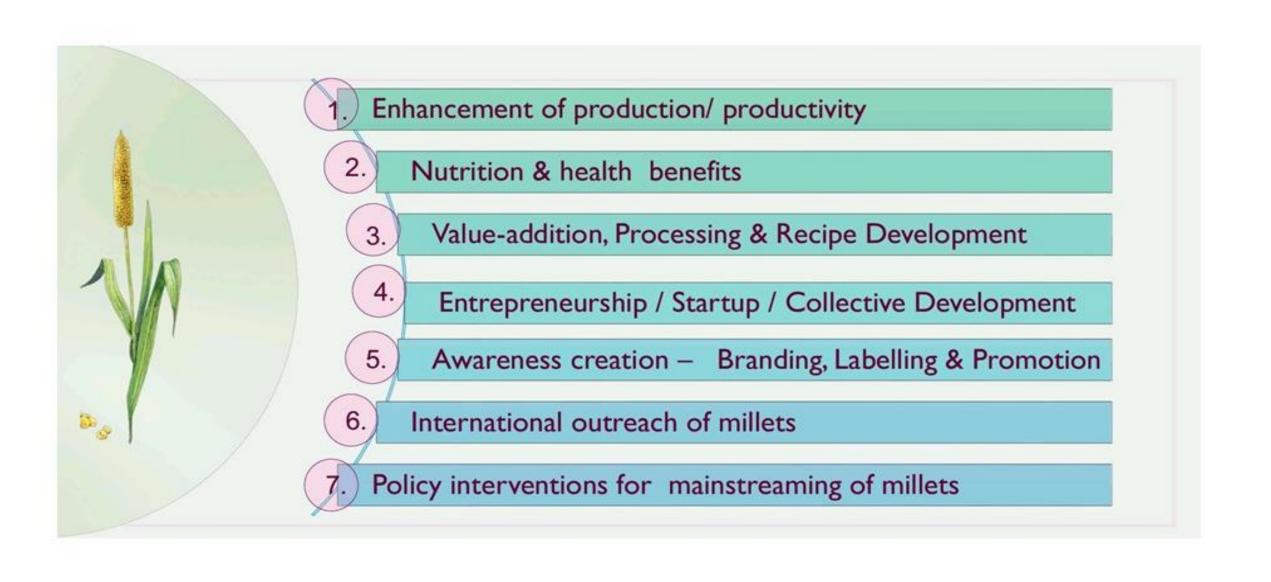


Sixth Annual Zonal Workshop of KVK'S

(Maharashtra, Gujrat & Goa)

28 – 30 July, 2023

Millets Production Technology


Presented by:

Dr. S.B. Pawar

Associate Director Research,
NARP, Aurangabad, VNMKV, Parbhani (MS)

- Government of India had proposed to United Nations for declaring 2023 as International Year of Millets (IYOM).
 The proposal of India was supported by 72 countries and United Nation's General Assembly (UNGA) declared 2023 as International Year of Millets on 5th March, 2021.
- Now, Government of India has decided to celebrate IYOM, 2023 to make it peoples' movement so that the Indian millets, recipes, value added products are accepted globally.

"International Year of Millets": Objectives

Definition of MILLETS - THE NUTRICEREALS

Millets are collective group of small seeded annual grasses that are grown as grain crops, primarily on marginal land in dry areas of temperate, sub tropical and tropical regions.

(http://www.fao.org/3/w1808e/w1808e0c.htm)

Climate Resilient Millets grown in 131 countries. Ancient food grains first plants domesticated for food - Earliest evidence found in Indus civilization dates back to 3000 BC: Millets traditional food for 59 crore people in Asia & Africa.

Pearl Millet (Bajra)

Sorghum (Jowar)

Finger Millet (Ragi)

Foxtail Millet (Kangni)

Kodo millet

Little Millet (Kutki)

Proso Millet (Cheena)

Barnyard Millet (Sawan)

Browntop millet

Teff millet

Fonio millet

GLOBAL SCENARIO

Americas

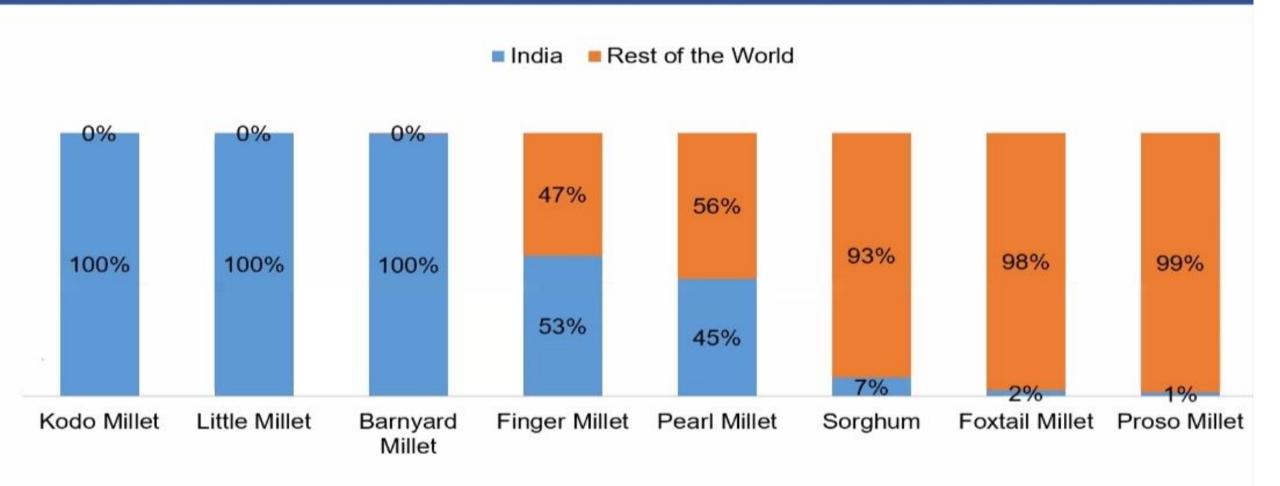
Area under Millets Cultivation: 53 lakh Ha

Production: 193 lakh ton

Asia

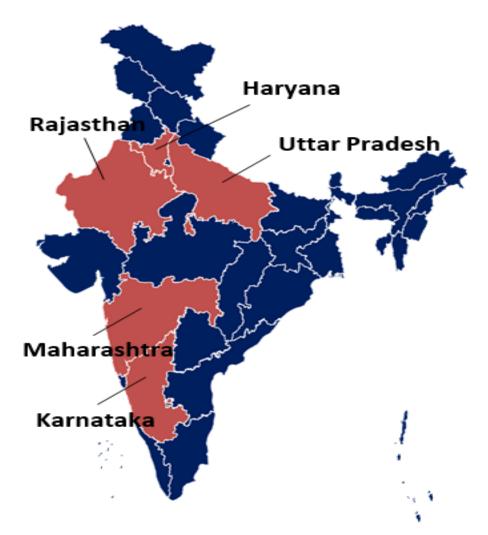
Area under Millets Cultivation: 162 lakh Ha

Production: 215 lakh ton


Australia & New Zealand

Area under Millets Cultivation: 6 lakh Ha

Production: 12 lakh ton


Source: FAOSTAT 2021

Percent Contribution of India to World Millet Production

Source: IIMR estimate based on FAO/DES-GOI data

INDIA SCENARIO


Top 5 Millet Producing States in India

Sr. No.	Name of Millet	Production (million tons) 2020-21	% contribution to total millets produced
1	<u>Baira</u> (Pearl Millet)	10.86	60.5%
2	Jowar (Sorghum)	4.78	26.6%
3	Ragi (Finger Millet)	1.96	10.9%
4	Small Millets	0.35	1.9%
5	Total	17.95	

Source: Directorate of Economics & Statistics, DA&FW

- India produces 80% of Asia's & 20% of global production
- Global average yield: 1229 kg/ha, India (1239 kg/ha)

MILLETS: THE NUTRI-CEREALS

Foxtail Millet

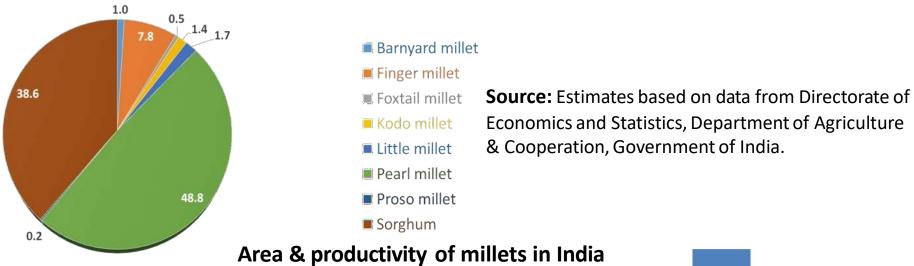
Finger Millet

Barnyard Millet

Little Millet

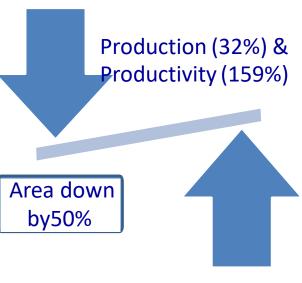
Pearl Millet

Proso Millet


- Earliest evidence found in Indus civilization : 3000 BC.
- Ancient food grains first plants domesticated for food.
- food for 59 crore people in Asia & Africa.

Millets are collective group of small seeded annual grasses that are grown as grain crops, primarily on marginal land in dry areas of temperate, sub tropical and tropical regions.

(http://www.fao.org/3/w1808e/w1808e0c.htm)

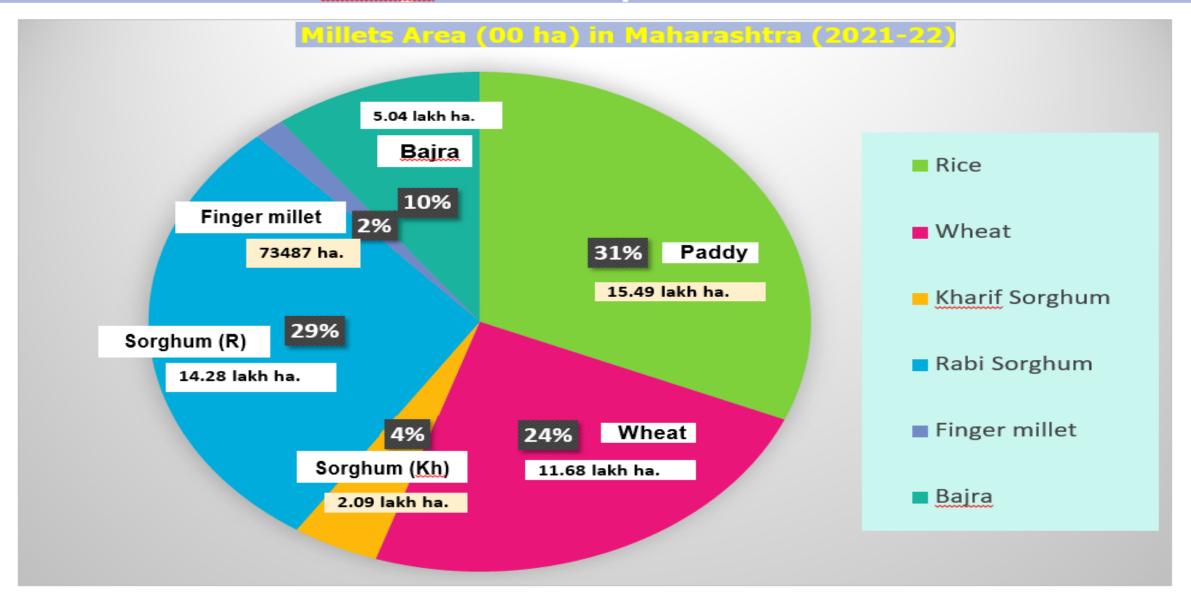

Top 5 States	Millet Crops	
Rajasthan	Bajra/Sorghum	
Karnataka	Jowar/Ragi	
Maharashtra	Ragi/Jowar	
Uttar Pradesh	Bajra	
Haryana	Bajra	

Area (%) under each millet in India



Crop	(Area lakh ha)		Productivity kg/ha)			
	1955-56	1985-86	2021-22	1955-56	1985-86	2021-22	
Sorghum	173.6	161.0	61.8	387	715	863	
Pearl millet	113.1	106.5	72	302	344	1214	

	(lakh ha)		kg/ha)		
	1955-56	1985-86	2021-22	1955-56	1985-86	2021-22
Sorghum	173.6	161.0	61.8	387	715	863
Pearl millet	113.1	106.5	72	302	344	1214
Finger millet	23.1	24.0	11.1	800	1049	1428
Small millets	53.4	31.6	7.5	388	386	571
Total millets	363.4	323.1	152.4	387	545	1055
% share in	42	81	13			
total cereals	-/-))				



Small Millets growing states in India

Crop	Major growing states
Finger millet	Karnataka, Maharashtra, Uttarakhand, Tamilnadu, Andhra Pradesh., Jharkhand, Orissa, Chattisgarh, Gujarat and Telangana
Little millet	Karnataka, Maharashtra, Tamilnadu, Andhra Pradesh, Madhya Pradesh, Jharkhand, Orissa, ,Gujarat and Chattisgarh
Kodo millet	Madhya Pradesh, Chattisgarh, Maharashtra, Tamilnadu, Karnataka
Barnyard millet	Uttarakhand, Uttar Pradesh, Karnataka, Madhya Pradesh., North East and Tamilnadu
Foxtail millet	Telangana, Andhra Pradesh., Karnataka, Rajastan, Madhya Pradesh, Tamilnadu and Chattisgarh
Proso millet	Bihar, North East, Tamil Nadu, Karnataka and Maharashtra.
Brown top millet	Karnataka, Andhra Pradesh, Telangana, Tamilnadu, Chattisgarh

Per centage of Cereal crop area in Maharashtra

Reason of low production and demand of millets

Supply side

- √ Traditional crops, low profit and less productivity
- √ Absence of infrastructure for primary processing
- √ Not cultivated as a major crops

Demand side:

- Very low demand and less consumption as a staple food
- ➤ Lack of awareness about nutritional benefits
- Changing lifestyle, Food habit

Policy side:

- ☐ PDS. ICDS, MDM
- ☐ Green revolution: Focus on Rice and Wheat

SMALL MILLETS/ NUTRIMILLETS

USP of Millets

Production side

- Dry land Crop; Short Duration & Grows well in marginal
- Low Water & Minimal Purchased Inputs but Responsive to High Input Management
- Resilience to Climate Change (C4 plant) & Ideal Contingent Crop
- Sustainable & Potential Future Crop
- Potential to offer Food, Fodder, Nutritional, Health & Fuel Security

Demand side

- Nutricereals- rich in Minerals & Vitamins, Dietary fibre and Anti Oxidant
- Possess Health benefits,
- Now technologies for RTC/ RTE foods available
- Offers as Functional food & Neutraceutical source

2- Nutritious food for all

3- For environment

Good for YOU - Nutritional Value of Millets

Grain (Millet /Cereal)	Carbo- hydrates (g)	Protein (g)	Fat (g)	Energy (Kcal)	Dietary Fibre (g)	Ca (mg)	Mg (mg)	Zn (mg)	Fe (mg)	Thiamin (mg)	Riboflavin (mg)	Niacin (mg)	Folic acid (µg)
Sorghum	67.7	10.0	1.7	334.1	10.2	27.6	133.0	2.0	4.0	0.4	0.1	2.1	39.4
Pearl Millet	61.8	11.0	5.4	348.0	11.5	27.4	124.0	2.8	6.4	0.3	0.2	0.9	36.1
Finger millet	66.8	7.2	1.9	320.7	11.2	364.0	146.0	2.5	4.6	0.4	0.2	1.3	34.7
Kodo millet	66.2	8.9	2.6	331.7	6.4	15.3	122.0	1.7	2.3	0.3	0.2	1.5	39.5
Proso millet*	70.4	12.5	1.1	341.1	-	14.0	153.0	1.4	0.8	0.4	0.3	4.5	-
Foxtail millet*	60.1	12.3	4.3	331.0	-	31.0	81.0	2.4	2.8	0.6	0.1	3.2	15.0
Little millet	65.6	10.1	3.9	346.3	7.7	16.1	91.4	1.8	1.3	0.3	0.1	1.3	36.2
Barnyard millet*	65.6	6.2	2.2	307.1	21	20.0	82.0	3.0	5.0	0.3	0.1	4.2	-
Wheat	64.7	10.6	1.5	321.9	11.2	39.4	125.0	2.9	4.0	0.5	0.2	2.7	30.1
Rice	78.2	7.9	0.5	356.4	2.8	7.5	19.3	1.2	0.7	0.1	0.1	1.7	9.3

Source: Indian Food Composition Tables, 2017, National Institute of Nutrition

Thus, no doubt Millets are Smart Foods

Why Millets need promotion?

- Millets are climate resilient crops
- Millets are adapted to smallholder production systems
- Millets are nutri-rich
- Millets are nearly organic foods and ecofriendly crops
- High yielding cultivars available in millets
- Millets' products have multiple uses
- Millets provide quality green forage and dry fodder

How to enhance the farmers' income?

- □ By increasing productivity
- □ By reducing cost of cultivation
- □ By increasing marketing opportunities
- Sustainable value chain through group approach

Prominent Millets Technologies

- 1. Use of high yielding cultivars
- 2. Improved practices and timely management
- 3. Water conservation practices
- 4. Millets-based inter cropping
- 5. New niches of millets cultivation
- 6. Primary processing and value-addition
- 7. Mechanization
- 8. Promotion of bio-fortified cultivars
- 9. Sustainable millets production and valuechain through FPOs
- 10. Promotion of allied enterprises

Significant Achievements

- ➤ Notification No. S. O. 1379 (E) dated 27/03/2018
- ➤ Higher grain yield (2912 kg/ha)
- ➤ Higher Iron content-88 ppm
- ➤ Higher Zinc content 41 ppm
- **► Medium maturity (80-85 days)**
- **▶** Resistant to Downey mildew
- Suitable grain hybrid for food supplements for anemic children and adults
- ➤ Very compact ear head, bold, globular and gray coloured grains
- ➤ Released and Notified at National Level

AHB 1269 Fe (2018)

- ➤ Notified in the 80th Meeting of Central Notification Committee
- ➤ High grain and Stover yield
- ➤ High-Fe (91ppm)
- ➤ High Zn (45 ppm)
- Suitable grain hybrid for food supplements for anemic children and adults
- ➤ Bold grain, medium maturity (81 days)
- **➤** Compact ear head
- **➤ Downy mildew resistant hybrid**
- > Released at National Level

VNMKV- NARP, Aurangabad received **Best ICAR- AICRP on Pearl Millet Centre for 2022-23** at ICAR-IIMR, Hyderabad on 11th July, 2023 during 61st AGM for significant contribution in Pearl Millet improvement in Zone B from ICAR- AICRP on Pearl Millet

Felicitation by Dr.Indra Mani Sir, Hon. Vice-Chancellor VNMKV, Parbhani

Pearl Millet Hybrid released and under active seed chain

Sr	Name of	Year of	Area of Adaptation	Duration	Yield (kg/ha)	
	Hybrid	Rele	Area of Adaptation	Group	Grain	Fodder
1	GHB-905	2013	Zone A (Kharif)	Medium	3200	7800
2	GHB 1225	2019	For Gujarat (<i>Kharif</i>)	Late	3023	7306
3	GHB 1129	2019	For Gujarat (Kharif and summer)	Medium	K-2957 S-5303	K-6210 S-9179
4	GHB 1231	2020 2021	For Gujarat (<i>Kharif</i>), Summer and Pre-Rabi)	Late	K-2916 S-5737	K-7545 S-8193
5	GHB-538 Improved	2021	For Gujarat (<i>Kharif</i>)	Early	2600	6300

Varieties of Baira (MPKV, Rahuri)

Sr. no.	V ariety	Release year	Soil type	Maturity (Days)	Yield (Q/ha)
1	Shraddha	1990	Light to medium	70 to 75	25 to 27
2.	Shanti	2006	Light to medium	80 to 85	30 to 31
3	Phule Dhanshakti	2012	Light to medium	74 to 78	20 to 22
4.	Phule Adishakti	2015	Light to medium	80 to 85	32 to 34
5.	Phule Mahashakti	2017	Light to medium	85 to 90	29 to 30

Phule Rohini (RPASV 3)

Τ	Release year	2015			
	Name of Institute / University	Sorghum Improvement Project, MPKV, Rahuri			
& A39/	Soil type	Medium – Deep soil			
	Climate	Rabi Season			
The said of	Sowing Time / Planting period	15 th September to 15 th October			
Seed Rate (Per acre)	4 kg/ Acre				
Crop duration	115-120 days				
Productivity	Grain Yield : 18-20 q/ha. Fodder Yield: 45-50 q/ha.				
Characters / features	Red grain, Tolerant to shoot fly, Tolerant to Charcoal rot, Tolerant to drought				

Phule Yashomati (RSV 1910)

	Release year	2021			
Dat 10	Name of Institute / University	Sorghum Improvement Project, MPKV, Rahuri			
	Soil type	Shallow soils			
	Climate	Rabi Season			
	Sowing Time / Planting period	15 th September to 15 th October			
Seed Rate (Per acre)	4 kg/ Acre				
Crop duration	112-115 days				
Productivity	Grain Yield: 9.2 q/ha.				
	Fodder Yield: 42.6 q/ha.				
Characters / features	Pearly white, medium bold and round grain, Tolerance to shoot fly and stem borer, Moderately resistant to Charcoal rot and foliar diseases (rust and leaf blight)				

Phule Purva (RSV 2371)

	Release year	2022			
	Name of Institute / University	Sorghum Improvement Project, MPKV, Rahuri			
Message Densels	Soil type	Deep soils			
MARKET BEAR OF	Climate	Rabi Season			
指进海绵外市台处定公司	Sowing Time / Planting period	15 th September to 15 th October			
Seed Rate (Per acre)	10 kg/ Acre				
Crop duration	118-121 days				
Productivity	Grain Yield : 20-25 q/ha. Fodder Yield: 65-70 q/ha.				
Characters / features	Variety is non lodging ideotype and can be suitable for mechanical harvesting & good for grain and fodder yield, tolerant to shoot fly, drought purpose Charcoal rot & medium bold, pearly white colour, lustrous grain				

Parbhani Shakti (PVK 1009)

List of improved varieties released for cultivation in India

State	Varieties
Finger millet	
Karnataka	DHFM-78-3, Vakula (PPR 2700), Arjuna (OEB-526), VL Mandua 376 (VL 376), VL Mandua 352 (VL 352),
	GPU 67, GPU 66, GPU 48, GPU 45, GPU 28, PR 202, MR 1, MR 6, Indaf 7, ML365, KMR 340, KMR 301,
	KMR 204, KMR 360
Maharashtra	VL Mandua 376 (VL 376), Phule Nachani 1 (KOPN 235), KOPLM 83, Dapoli 1, Dapoli 2
Foxtail millet	
Karnataka	DHFt 109-3, HMT 100-1, SiA 3156, SiA 3088, SiA 3085, SiA 326, PS 4, Narasimharaya, HN-46
Little millet	
Karnataka	DHLM 36-3, DHLM 14-1, Chhattisgarh Kutki 1 (BL-6), OLM 203, JK 8, LMV 518, BL-41-3
Maharashtra	Chhattisgarh Kutki 1 (BL-6), Phule Ekadashi (KOPLM 83), JK 8, OLM 203, DHLM 36-3, DHLM 14-1, LMV
	518
Proso millet	
Karnataka	ATL 1 (TNPm 230), DHPM-2769, GPUP 8, GPUP 21, TNAU 145, TNAU 151, TNAU 164, TNAU 202
Kodo millet	
Karnataka	GPUK 3, RBK 155, RK 390-25, TNAU 86, ATL-2, BK-36
Kodo millet	
Karnataka	GPUK 3, RBK 155, RK 390-25, TNAU 86, ATL-2, BK-36

Varieties Released: Small millets, ZARS, Kolhapur

Package of practices for higher yield of millet

Selection of good variety

Seed Treatment

Sowing of Seed & Fertilizer

Maintain plant population

Production Technology

Particulars	Kharif Sorghum	Rabi Sorghum	Pearl Millet	
Major states	Maharashtra, Karnataka, Andhra	Maharashtra, Karnataka, Andhra	Maharashtra, Rajasthan, Gujrat, Haryana, Punjab,	
	Pradesh, MP	Pradesh, Tamilnadu	Delhi, Tamilnadu, Uttar Pradesh	
1) Season	Kharif	Rabi	Kharif	
2) Sowing time	15 June – 15 July	1 – 15 October	15 June – 15 July	
			S- 15 January to 7 February	
3) Seed rate (kg/ha)	10 kg/ ha	10 kg/ ha	2.5 kg / ha	
(transplanting)				
4) Seed treatment	Thirum 3 g / kg	Imadochlopride 70 % 3 g / kg	Metalaxyl 4- 6 g / kg	
	Thiamethoxam 3 g / kg			
5) Biofertilizers		Azospirilium & PSB 10-15 g /kg	Azospirilium & PSB 10-15 g /kg	
6) Spacing	45 x15 cm	Rainfed 45 x15 cm	45 x 10 cm	
		Irrigated 45 x10 cm		
7) Sowing depth	3-4 cm	5 cm	3-4 cm	
8) Thinning	After 15-18 days	After 15-18 days	After 15 days	
9) Fertilizer dose	80 : 40 : 40	1) 40 : 20 : 20 – Rainfed	40- 60 kg N / ha in two split doses	
		2) 80 : 40 : 40 – Irrigated	$30-40 \text{ kg P}_2\text{O}_5$ as a Basal dose	
10) Irrigation (critical	1) Seedling stage	1) 30- 35 Days after sowing	1) Seedling stage	
stages)	2) Flowering stage	2) 50-55 Days after sowing	2) Grain filling stage	
	3) Grain filling stage	3) 70-75 Days after sowing		
		4) 90-95 Days after sowing		
11) Maturity	110-115 Days	115-125 Days	80-85 Days	
12) Productivity (Q/ha)	30-35 qt/ha	35-38 qt/ha	28- 32 qt/ha	
13) Improved varieties	Varieries -PVK-801, PVK-809,	Rainfed- Parbhani Moti, Parbhani	Population- AIMP- 92901, PPC-6, ABPC-4-3	
•	Hybrids- CSH-25, SPH- 1641, CSH-	<u> </u>	, Hybrids - AHB- 1666, Shanti, Shradha, Saburi,	
	14,	Irrigated- Parbhani Jyoti, Parbhani	Bio fortified hybrids - AHB- 1200, AHB- 1269	
	CSH- 16, CSH- 35	Super Moti, Phule Vasudha, Phulr		

Production Technology

Particulars	नाचणी (Finger millet)	वरई/ वर। (Little millet)	राळा (Foxtail millet)		
Major states	Karnataka, Maharashtra, Uttarakhand	AP, MS, KR, TN, RJ	AP, MS, KR, TN, RJ		
1) Season	Kharif	Kharif	Kharif		
2) Sowing time	15 June to 15 July	15 June to 15 July	15 June to 15 July		
3) Seed rate (kg/ha) (transplanting)	3.00 to 4.00	3.00 to 4.00	3.00 to 4.00		
4) Seed treatment	Carbendazim @ 2.00 g/kg	Carbendazim @ 2.00 g/kg	Carbendazim @ 2.00 g/kg		
5) Biofertilizers	Azospirillum brasilense and Aspergillus awamori @ 25 gm/ kg	Azospirillum brasilense and Aspergillus awamori @ 25 gm/ kg	Azospirillum brasilense and Aspergillus awamori @ 25 gm/ kg		
6) Spacing	30.0 cm (row) x 10.0 cm (plant)	30.0 cm (row) x 10.0 cm (plant)	30.0 cm (row) x 10.0 cm (plant)		
7) Sowing depth	1.00 to 1.50 cm	1.00 to 1.50 cm	1.00 to 1.50 cm		
8) Thinning	25 to 30 DAP	25 to 30 DAP	25 to 30 DAP		
9) Fertilizer dose	60:30:30 N, P ₂ O ₅ K ₂ O kg/ha	40:20:20 N, P ₂ O ₅ K ₂ O kg/ha	40:20:20 N, P ₂ O ₅ K ₂ O kg/ha		
10) Irrigation (critical stages)	Tillering phase Flowering Grain filling	Tillering phase Flowering Grain filling	Tillering phase Flowering Grain filling		
11) Maturity	95 to 120 Days	85 to 130 Days	70 to 90 Days		
12) Productivity (Q/ha)	20 to 25	15 to 20	15 to 25		
13) Improved varieties	P.Nachani, P.Kasari, Dapoli-3	P.Ekadashi, Kokam Satvik	PDKV Yashshree		

Major points for increasing productivity of small millets

- 1) Crops responsive to inputs
- 2) Seed treatment and use of high yielding varieties
- 3) Timely transplanting
- 4) Planting in rows (30.0 x 10.0 cm)
- 5) Weed management and irrigation at critical stages
- 6) Pest and disease control

Insitu soil and water conservation Practices to be adopted before commencement of rains

Preparation of square basins (20 x 20m)

With the help of tractor operated plough prepared the square basins of 20 x 20m

- Increase in soil moisture by 13 to 62 %
- Conservation of soil and nutrients

Bunding for shallow to medium deep soils

Recommendation domain: Solapur, Ahmednagar, Western part of Beed, Osmanabad, Aurangabad, Eastern part of Pune, Sangli, Southern part of Dhule, Jalgaon and Jalna in Maharashtra.

- Size 6x6 m to 10x10 m.
- Ridge height 20 to 30 cm

Performance: The practice of compartment bunds conserved 35% more moisture than farmer practice (two harrowings only) and increased grain yield of *rabi* sorghum is to the tune of 2.0 q / ha. with B:C ratio 1.83

Contour Cultivation with opening of ridges and furrows

- Yield > 38.82% (Jowar), 50% (Cotton)
- RWUE > 33.57% (Jowar),> 47.37% (Cotton)
- Soil moisture > 27.06%, (J.), 71.42% (C.)
- Runoff
- Soil loss

Nutrient loss —

upto 100%

Coot per be Be E200/ (Ade

Cost per ha – Rs. 5300/- (Addi.)

Effect on Soil Properties Reduction in-

- Bulk Density, mg/m³ 1.39 < 1.30
- Soil Resi., KPa
 - 3264 < 2145 (0-15cm depth)
 - 3288 < 2259 (15-30cm depth)

Increase in-

• Field Cap., % - 29.10 > 31.30

Opening of continuous furrows 30 days after sowing retained higher soil moisture during dry spell, enhanced rain water productivity and increased yield of sorghum and cotton. This can be adopted by farmers using traditional tools.

Sorghum cultivars according to soil depths

Recommendation domain: Solapur, Ahmednagar, Western part of Beed, Osmanabad, Eastern part of Pune, Sangli, Satara

> Performance:

Shallow soils (upto 30 cm) Selection-3, Phule Anuradha – Increase in yield 15 % over F.P.

Medium soils (upto 60 cm) Phule Maulee, Phule Suchitra, Maldandi 35-1 – Increase in yield 20 % over F.P.

Deep soils (60 cm and above) Phule Vasudha, Phule Yashoda, Phule Revati – Increase in yield 25 - 30 %

over F.P.

Sorghum-M 35-1

Sorghum -Phule Vasudha

Sorghum- Phule Anuradha

Sorghum- Phule Maulee

Table.1 Grain yield, fodder yield, 100 grain weight, WUE and economics of *rabi* sorghum under different treatments (Pooled)

Treatment	Grain yield (kg/ha)	Fodder yield (kg/ha)	100 grain weight (g)	Total water use (mm)	WUE (kg/ha- mm)	GMR (Rs./ha)	NMR (Rs./ha)	B:C ratio
Irrigation Sched	lule:							
I ₁ - Drip at 1.0 ETc	5767	8857	3.88	320.7	17.98	136080	103260	3.15
I ₂ - Drip at 0.75 ETc	5378	8583	3.68	261.1	20.60	128030	95214	2.90
I ₃ - Drip at CGS	3988	6968	3.27	233.0	17.12	98810	65990	2.10
I ₄ -Surface at CGS	3349	6146	3.01	363.3	9.21	80781	58344	2.49
I ₅ - Rainfed	1592	3551	2.76	103.3	15.41	41438	23642	1.33
SEm ±	1.47	3.02	0.09		-	2745	2744	0.108
CD (P=0.05)	4.39	8.96	0.28	-	-	8142	8142	0.321
Variety:								
V ₁ -SPV 1595	3844	6702	3.40	:=.::	-	93512	65773	2.25
V ₂ -AKSV 18R	4185	6940	3.24	-	-	100540	72805	2.51
SEm ±	0.93	1.91	0.06	-	-	1738	1735	0.069
CD (P=0.05)	2.77	NS	0.17	-	-	5149	5149	0.203
Interaction:		•	•		7. Tu		To .	
SEm ±	2.09	8.86	0.13		-	3881	3881	0.153
CD (P=0.05)	NS	NS	NS	-	-	NS	NS	NS
Season x Treatn	nent:				-		•	
SEm ±	6.74	29.65	9.19	- 1	-	-	-	-
CD (P=0.05)	NS	NS	NS	744	-	-	-	-
GM	4015	6823	3.34	-	-	97,027	69,290	2.39

Ridges and furrow for medium deep to deep soils

Recommendation domain: Solapur, Ahmednagar, Western part of Beed, Osmanabad, Aurangabad, Eastern part of Pune, Sangli, Southern part of Dhule, Jalgaon and Jalna in Maharashtra.

- Opening of ridges and furrows with Baliram plough across the slope after onset of monsoon i.e. first shower.
- The width of furrow 45 to 50 cm.

Performance:

- ➤ Moisture conservation 45 per cent more than local practice
- The *rabi* sorghum grain yield increased by 53 per cent (2.5 3 q/ha) over farmers practice (i.e. two harrowings only) with B:C ratio 2.10

Rainwater harvesting in Farm Pond and efficient utilisation

Recommendation domain: Solapur, Ahmednagar, Western part of Beed, Osmanabad, Aurangbad, Eastern part of Pune, Sangli, Satara, Southern part of Dhule, Nanadurbar, Jalna.

Performance:

With supplemental / protective irrigation increased yield upto 30-40 per cent in kharif / rabi crops

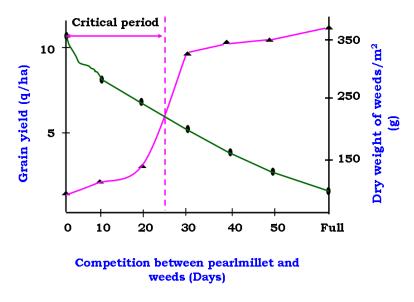
Potential of the technology: with supplemental /protective irrigation to kharif / rabi crops during dry spell and majorly establishment

Hoeing

Recommendation domain: Solapur, Ahmednagar, Western part of Beed, Osmanabad, Aurangbad, Eastern part of Pune, Sangli, Satara, Southern part of Dhule, Nanadurbar, Jalna.

Performance:

Hoeing removes soil cracks and create dust mulch, Draft required for interculture is very less. Area covered 0.2 ha per day, reduce drudgery, in *kharif* for weed control and in rabi for moisture conservation and availability



Weed management

- Weeds cause 37-79 per cent loss to the crop production.
 It must be observed the critical period for weed control.
- In pearlmillet 20-30 days from sowing of the crop is the

critical period. Fig. 1. Pearlmillet yield and dry weight of weeds affected by competition- Solapur

Some of the weed control practices like manual weeding, interculturing are found beneficial in dryland crops.

Selective herbicides for weed control in major dryland crops

Crops	Herbicides combination	Rate (kg/ha)	Time of application	Remarks
Sorghum	Atrazine fb 1 HW	0.25-0.5	PE	Broad spectrum control of annual grassy and broad leaved weeds
	Simazine	0.5-1.0	PE	
	Alachlor	1-1.5	PE	
	Isoproturon	0.5-0.6	PE	
		0.2-0.5	PE	
		0.5-1.0	PE	
Millets	Atrazine	0.2-0.5	PE	Mainly grassy weeds
	2,4-D	0.75-1.0	POST-E	To control Striga spp.

Scope & Hopes for Area expansion of Small millets in non-traditional season and non-traditional area of Maharashtra

- 1) Summer finger millet cultivation
- 2) Sugarcane Intercropping
- 3) Horticultural crops- Intercropping
- 4) Cotton-Intercropping
- 5) Finger millet as dual purpose (grain and fodder)

Prominent millet intercropping systems of millets observed

Inter/mixed/strip Cropping	Ratio	States
Finger millet + pigeon pea	8-10: 2 6:2	Karnataka & Tamil Nadu, Bihar
Tansplanting of pigeon pea as intercrops In Finger millet	2:8	Chhattisgarh
Finger millet + Field bean	8:1	Karnataka & Tamil Nadu
	6:2	Bihar
Finger + Soybean	4:1	Karnataka
Finger millet + moth bean/ black gram	4:1 6-8:1	Maharashtra (Sub –montane region)
Finger millet + soybean (mixed cropping system)	90:10	Uttarakhand
Finger millet + Ground nut strip cropping	6:9	Karnataka

Cropping system	States	
Sorghum + Pigeon pea(2:1)	Telangana, Marathwada, Vidarbha, Malwa Plateau, Parts of Gujarat	
Pearl millet + Pigeon pea (2:1)	Telangana, Karnataka, Maharashtra, MP, Rajasthan, Haryana, Tamilnadu	
Cotton + Sorghum + pigeon pea	Maharashtra	
Pearl millet + green gram	Rajasthan, Haryana	
Finger millet + Soybean(4:1)	Karnataka, Jharkhand	
Finger millet + Field bean(8:1)	Karnataka	
Castor + Finger millet(1:2)	Karnataka	
Cowpea + Finger millet	Karnataka	
Rabi season		
Black gram + sorghum	Karnataka, Maharashtra, Madhya Pradesh	

Millet sequence cropping found in different parts of country

Sequence cropping	State	
Sorghum -chickpea	Karnataka, Maharashtra, Madhya Pradesh, Rajasthan	
Sorghum- wheat	Punjab	
Sorghum-safflower	Karnataka	
Black gram- sorghum	Karnataka, Maharashtra	
Ground nut - sorghum	Karnataka	
Pearl millet- wheat	Haryana	
Pearl millet -chickpea	Haryana, Uttar Pradesh	
Pearl millet —cluster bean	Haryana	
Pearl millet —cluster bean/ moth bean/ mung bean	Rajasthan	
Pearl millet- barley/ black gram	Jammu	
Pearl millet-mustard	Rajasthan, Haryanna	
Groundnut-Potato-Pearl millet	Gujarath	
Paddy- finger millet	Odisha, Madhya Pradesh	
Foxtail millet- safflower	Karnataka	

Intercropping of Pearlmillet + Pigeonpea (2:1) on medium deep black soils

Recommendation domain: Solapur, Ahmednagar, Western part of Beed, Osmanabad, Eastern part of Pune, Satara, Dhule

Performance:

Intercropping system gives more net monetary returns (Rs. 8000/ ha) over sole cropping of pearlmillet (Rs. 3000/ ha) with B:C ratio 1.90

Inter crop

Intercropped with Tur in proportion of 3:3 or 4:2 rows or Soybean in 2:4 or 3:6 rows.

Sorghum effected by short periods of heat / drought stress which resulted into lower seed set and lower seed number.

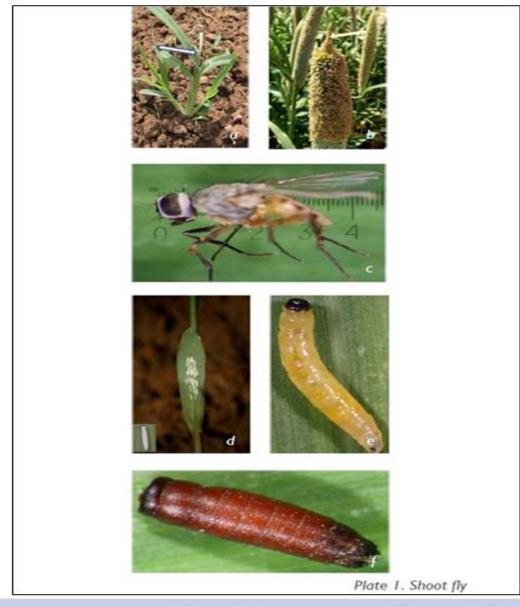
- > Floret fertility decreased by short episodes (5 d) of stress.
- > Maximum decreases during gametogenesis and fertilization.
- > Grain weight was decreased during early rapid grain filling.

Sensitive Stage:

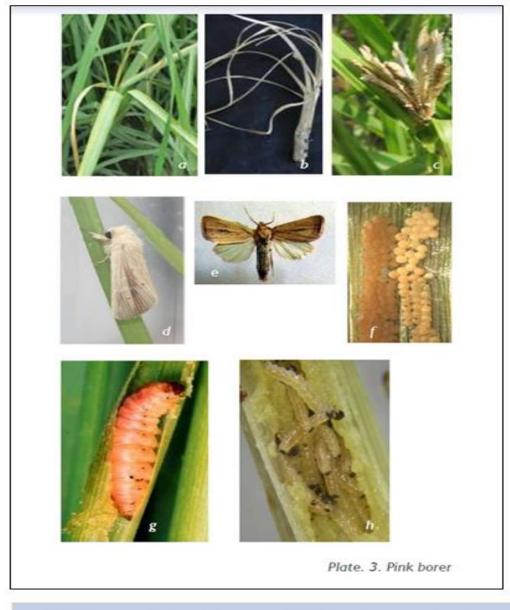
If the temperature is about 40 degree Celsius for two days i.e. 10 days before anthesis and at anthesis in case of Pearl Millet

Crop protection

Shoot fly larvae



Dead heart symptom


Shoot fly: Seed treatment with Thiamethoxam 70% @ 3 g / kg seed. Cypermethrin 10% WS @ 10 ml or deltamethrin 2.8% WS @ 12.5 ml or chloropyriphos (20% WS@25ml / 10 lit.)

Stemborer: Cypermethrin 10% WS @ 10 ml or deltamethrin 2.8% WS @ 12.5 ml or chloropyriphos (20% WS@25ml / 10 lit.)

Grain mold: Harvest at physiological maturity, spraying of mancozeb 3g / lit. of water from flowering to physiological maturity at 10 days interval.

Seed treatment: Thiamethoxam 30 FS @ 10 ml/kg
Spray: Cypermethrin 10 EC (750 ml/ha.) or
Quinolphos 25 EC (400 g a.i./ha)

Application: Carbofuron 3 G granules in whorls @ 8-12 kg a.i./ ha

Front Line Demonstration

	Aurangabad	Dhule	
Area (ha)	10	10	
No of	25	25	
Demonstration			
Name of Hybrid	AHB 1200Fe	Adhishakti	
Increasing in yield over farmers practices (%)			
Grain	26.12	17.45	
Fodder	27.06	14.19	

Progressive Bajra growing farmers

Shri.Nivrutti Kagde

Village :lakhegaon

Ave. Yield: 16 q/Acre

Shri. Pandurang suryawanshi

Village :Khandala

Ave. Yield: 12 g/Acre

Shri. Ranjit Chungade

Village :lakhegaon

Ave. Yield: 13 q/Acre

Shri. Ishwar Sapkal Village: Soygaon

Ave. Yield: 14 q/Acre

Shri. Nivrutti Kagade, farmer from village Lakhegaon was a beneficiary of FLD.

He took 2500 kg/ha yield. He was aware about nutritional content in AHB-1200

Fe. So looking this nutritional benefit he sold his produce by making of 1-5 kg

packets. Maha Agro exhibition was organized during this year in NARP,

Aurangabad campus and he sold 20 qt. seed to the consumers of

urban as well as rural people. Second most important thing is he

as well as rural people. Second most important thing is he popularized such a wonderful hybrid in the vicinity of his village. That's why demand for this hybrid for sowing as well as nutritional purpose

Case Study

Primary Processing Machineries

Machinery for Primary Processing

De-stoning cum Grader

Millet Mill

Single stage dehuller

Double stage dehuller

Advantages: Less labor required

De-hulling efficiency range - 50% to 70%

Value added products from Small millets

Ready-to-Eat millet foods (Express food)

- → E.g. Poha mix, Veg Pulao mix, Upma mix
- RTE Little millet poha mix was developed by using parboiled little millet flakes and other seasoning items.
- · Rehydration tests, nutritional parameters, sensory and shelf life was conducted.
- → It was observed that the 1:1 ratio of (Mix and water) was good compared with other samples.

READY-TO-COOK FOODS BASED ON MILLETS

500 + recipes developed

Factors for mainstreaming millets

1	Farmer/ producer	7	NGOs
2	FPC/ FPO	8	Farm implement, Machineries manufacturers
3	Purchasers/ market	9	Mahabeej/ Seed Companies
4	State Agril. Department	10	MSME/ Processors
5	Agril. Universities/ Research Institutes	11	SHG
6	Other Govt. Departments	12	Media (Newspaper/ DD/ Radio)

Production Processing Marketing Consumption

